THE MFS SYSTEM
This section discusses one of the more powerful features of DLXS XPAT, the MFS System (Multi-File System). If you are setting up a text database for the first time, you can read this introduction and then skip to Chapter 3. Afterwards, when you are more familiar with DLXS XPAT, you can return to this section and finish reading it.

The MFS (Multi-File/Filter Support) system is a module that all DLXS XPAT index-building and search programs use to access the text of MFS databases. The MFS system allows the text of the database to exist as a group of files in any number of directories on disk. In addition, the MFS system allows these files to be in many different data formats (e.g., native word-processor files, spreadsheet files, relational database files, ASCII files, etc.). The MFS system supports this variety of data formats by using afilter system. This filter system is needed because of the difference between the data formats of the files on disk and the data formats required by the DLXS XPAT programs. For example, most word-processor files consist of the text of the document combined with the word-processor's formatting commands. In contrast, the DLXS XPAT programs require just the text, without the formatting commands. The data filters in the MFS system "filter" the word-processor data to eliminate the formatting commands, passing the remaining text to the indexing and search programs.

The MFS System concatenates the filtered texts of all the files in the database together to form a "virtual text" file. The indexing programs then build their indices on this virtual text file, and the search programs effectively perform searches on this file. Note that the entire virtual text never actually exists physically on disk; the MFS system generates the segments that the indexing and searching programs require.

In order to provide the required level of filter flexibility, the MFS system combines several filters intofilter chains. A filter chain is a sequence of filters that are linked together in series so that the output of one filter is the input of the next. The first filter in the chain reads the raw file on the disk, while the last filter sends its output to the indexing and search programs.

The MFS configuration for most data formats consists of two filters. The first filter is a word- processor filter that extracts the text from a particular type of word-processor file. The second filter is the meta filter, which DLXS XPAT supplies. The meta filter creates a basic tagged structural framework around the text of each file. Included in this meta-data is extra information that is associated with the file, but which is not in the actual text of the file (e.g., the filename, the modification date, etc.). This basic two-filter configuration is illustrated in Figure 2-5.

[need illustration]

Note: While most filter chains consist of this two-filter configuration, the general filter chain mechanism can have any number of filters. The only requirement is for each filter to be able to process the output format of the previous filter in the chain. For example, suppose the database consists of a group of encrypted, compressed word-processor files. The filter chain might then consist of a decryption filter, followed by a decompression filter, followed by the word-processor filter, and ending with the meta filter.

The FastFind Index [shoved here temporarily by jpw]
The FastFind Index is a performance-enhancing, supplementary index for the Main Index. The FastFind index is generally required for MFS databases. This is especially true of MFS databases consisting primarily of word-processor files. This is because the access to the text is usually relatively slow since the text must be passed through a filter system before the search engine can use it. This filtering stage adds a significant time overhead (the MFS system is explained in more detail in Section 2.2).

The FastFind Index consists of three files. These files are usually named with the same prefix as the DD, and with the suffixes '. ffc', '. ffi' and '. ffw'. These files are built by the patffiSO and patffO50 programs, which are described in detail in Chapter 12.

The FastRegion Indices [shoved here temporarily by jpw]
The FastRegion Indices enhance the performance of search operations that limit string searches to specific regions. One FastRegion Index is built for each region in the database for which search performance needs to be enhanced. If a FastRegion Index is built for a particular region, the time is greatly reduced for search operations that find occurrences of a search string in that region. You would normally build FastRegion Indices for the regions that will be used the most in database searches (e.g., Title, Summary or Date fields).

Each FastRegion Index consists of one file. This file is named with the prefix set to the name of the region it was built for, and with the suffix '. fri'. This file is built by the patfr50 program. This program is described in detail in Section 12.3.5.

The FileMap [shoved here temporarily by jpw]
The FileMap is a central component of MFS databases. It contains one entry for each file that is a part of the database. Each entry contains supplementary information related to the corresponding file. In essence, the FileMap is a sort of directory for all the files in the database.

The FileMap consists of three files. These files are usually named with the same prefix as the DD, and with the suffixes '. fmp', '. xmp' and '. Imp'. These files are built by the mfsbld50 program, which is described in detail in Section 12.3.1.

Meta Filter Details
As mentioned above, the meta filter takes the text from the previous filter in the chain (usually the word-processor filter) and wraps extra tagged data fields around this text. These fields are called meta-fields. The meta-fields contain system-related data, such as the text file's modification date and filename. In addition, the meta-fields can also contain user-defined information that is associated with the text file, such as the text of a Headline, Title or Summary for the file. This user-defined information is called user meta-data.

The following example illustrates how the different components all fit together. As you follow this example, refer to Figure 2-5.

Assume a word-processor file exists on disk. Also assume that when the data in that word-processor file is passed through Filter I (in Figure 2-5) the following line of text is the result:

This is the text component of a word processor file

Next, assume that the following line is the user meta-data for the file (the details of how the user meta-data is incorporated into the FileMap is covered in Section 12.3.1):

This is the headline for the word processor file

Finally, assume that the file's name is 'wpf ile. doc', and that it was last modified on March 21, 1993 at 10:34 am. Then the following lines would be the output of the meta filter (Filter 2 in Figure 2-5):

<OTDoc><OTMeta><OTFile>wpfile. doc</OTFile><OTDisplayFmt>wp

</OTDisplayFmt><OTDate>1993/03/21</OTDate><OTTime>10:34

</OTTime><OTFieldsSize>49</OTFieldsSize><OTFields>This is the

headline for the word processor file</OTFields><OTData>This is

the text component of a word processor file</OTData></OTDoc>

Note: In the real output there would be no newlines. The actual text of the file is contained between the <OTData> and < / OTDa ta> tags. The majority of the above fields are self-explanatory. The only field that may not be familiar is the <OTDisplayFmt> field. This field is discussed in Section 1.2.3.

The meta filter is required in the filter chains for two main reasons. The first is that it provides a structural framework around the text of the file. This framework is necessary because the powerful structure operations that the search engine supports require some form of explicit structural markup in the text (e.g., start and end tags around different structural elements, such as the file and the Headlines). In MFS databases, the actual filtered text that is produced by the word-processor filter usually contains little or no structural markup. The meta filter adds structure to this raw text by providing a consistent form of structural markup (i.e., the above <OT. .. > tags). User interface programs are then guaranteed to be able to perform structural operations at the file level in a consistent manner across all MFS databases.

The second reason for the meta filter is that it provides rapid access to the meta-fields that it generates. This feature is important because part of the operation of most user interfaces involves the construction of summary lists for the results of queries. These summary lists must be built quickly to ensure fast response times. Each line in the summary list usually contains information that allows users to either identify the corresponding file or the contents of the file. This task can usually be facilitated by providing the user with the filename, Title, Headline or Summary. The meta filter meets the requirement for such fast access by getting all the information it needs from the FileMap (the FileMap, as described in Section 2.1.6, is essentially a directory of all the files in the database).

You should recognize that the user meta-data for each file can be any segment of text. While the user meta-data in the above example consisted of a simple line of text, it may just as easily consist of a number of tagged fields. The only consideration in using it this way is that the longer the size of the user meta-data, the bigger the FileMap files.

As an example, assume that the database consists of a group of image files that were scanned from a paper document. Also assume that the image of each page is in a file by itself. Assume that the user meta-data must include three fields for each file. These are the Title of the page (assume this can be extracted somehow), the page number, and a link number to, say, the next page that deals with the same subject. Then, the user meta-data for a given file might consist of the following line (<HL> is Headline field, <PN> is the page number field, and <LINK> is the link field):

<HL>Some headline text</HL><PN>128</PN><LINK>354</LINK>

Assume the first filter in the filter chain is some sort of OCR filter, and that the output of that filter for the above page is the following line of text:

Some great document whose next page is on page 354

Then, the output of the meta filter would be something like the following:

<OTDoc><OTMeta><OTFi 1 e>wpf i 1 e.doc</OTFi 1 e><OTDisplayFmt>wp

</OTDisplayFmt><OTDate>1993/03/21</OTDate><OTTime>10: 34

< /OTTime>OTFieldsSize>57< /OTFieldsSize><OTFields><HL>Some

headline text< /HL><PN>128</ PNL><LINK>354</LINK>< /OTFields>

<OTData>Some great document whose

next page is on page 354</OTData></OTDoc>

Note: The user meta-data text is copied verbatim into the meta filter output (tags and all). The region- building program can then build regions on these user meta-data tags, with the same mechanism that is used to build other regions. The only limitation is that you should not use any of the following tags in your user meta-data, as they are the meta field tags and are reserved for use by the DLXS XPAT system:

<OTDoc>
</OTDoc>

<OTMeta>
</OTMeta>

<OTFile>
</OTFile>

<OTDisplayFmt>
</OTDisplayFmt>

<OTDate>
< /OTDate>

<OTTime>
< /OTTime>

<OTFieldsSize>
</OTFieldsSize>

<OTFields>
</OTFi elds>

<OTData>
</OTData>

Database Views
The filter chain mechanism described in the previous section essentially provides a view of the database. A view is characterized by the transformation that its filter chain performs. For example, the above discussion described the filter chain for a view of the database's text. That view can be contrasted with a different view that, for instance, retains some or all of the word processing commands in the file.

The text view is appropriate for indexing purposes. However, it may not be appropriate for operations such as text previewing, since accurate reproduction of the original document is much easier when the original formatting commands are available. The MFS system supports three different database views to handle the different requirements of the different parts of the text DBMS. These views are the Search View, the Display View and the Raw View.

The Search View was discussed above and is depicted in Figure 2-5. This view provides a window into the text of each file in the database, along with the meta data associated with that file. The indices are built upon this view and the searches are performed on this view.

The Display View is intended to provide a view of the database that is suitable for display purposes. The Display View exists because the data in the Search View consists of just the text; none of the formatting commands are retained. The text, alone, may not be appropriate for viewing programs because it will likely not contain enough information to recreate the original formatting.

One important point to note about the Display View is that the actual format of the data coming out of this view does not need to be the same as the original data file. For example, consider a filter chain that converts the word-processor data into a stream of typesetting commands for a particular typesetting system. The user interface program can then send that data stream to a viewer program that understands the typesetting language. As long as filters exist that can transform all the different data formats in the database into a single typesetting language, the same viewer program can be used to view all the files of the database.

Another example of the Display View is a filter chain that does not perform any transformations at all (i.e., which passes the raw word-processor data to the viewer program). In that case, the word-processor program itself could be used as the viewer. This solution has the advantage of not requiring any intermediate transformation filter, but has the disadvantage of requiring a separate viewer program on the screen for each different data file format in the database, which can lead to a cluttered screen.

One solution is a combination of the above methods, involving a small number of viewer programs to support a wide variety of data formats. In such systems, each viewer program may have its own Display View data format. Because of this, the user interface needs some way of identifying which data format is currently being sent so it can route that data to the correct viewer program. This requirement is handled by the Display Format label.

The Display Format label is a short string that uniquely identifies each Display View data format. The Display Format label for each different type of file is defined at index building time. The user interface configuration parameters must also be setup to direct the data for each label to the correct viewer. This user interface viewer configuration is covered in the DLXS XPATQuery Configuration. The Display Format label is generated by the meta filter, which places it in the <OTDisplayFmt> meta-field. User interface programs then only have to look in that field to determine the format of each file's Display View data.

One final point to note about the Display View is that its filter chain should always end with the meta filter. The meta filter is necessary because most user interfaces require some or all of the information that it provides (such as the DisplayFormat label).

MFS System Summary
The MFS system is one of the subsystems that provides the flexibility of DLXS XPAT. The MFS system allows the source data to (1) be distributed over many files in many directories and (2) be in a variety of file formats, including ASCII, native word-processor, spreadsheet, database. etc. The MFS system uses filter chains to dynamically "normalize" the various source file formats into a form that DLXS XPAT can use. The configuration of MFS databases is explained further in Chapter 3.

